10 research outputs found

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Generation of Non-Linear Technique Based 6 Hourly Wind Reanalysis Products Using SCATSAT-1 and Numerical Weather Prediction Model Outputs

    No full text
    We combined observations of ocean surface winds from Indian SCATterometer SATellite-1 (SCATSAT-1) with a background wind field from a numerical weather prediction (NWP) model available at National Centre for Medium-Range Weather Forecast (NCMRWF) to generate a 6-hourly gridded hybrid wind product. A distinctive feature of the study is to produce a global gridded wind field from SCATSAT-1 scatterometer passes with spatio-temporal data gaps at regular synoptic hours relevant for forcing models and other NWP studies. We are following the concept from the modern particle filter technique, which does not represent the model probability density function (PDF) as Gaussian. We generated the 6-hourly hybrid winds for 2018 and validated them using the wind speed from daily gridded level-4 SCATSAT-1 winds (L4AW), Cross Calibrated Multi-Platform (CCMP) dataset and global buoy data from National Data Buoy Centre (NDBC). The results suggest the potential of the technique to produce scatterometer winds at the desired temporal frequency with significantly less noise and bias along the swath. The study shows that the generated hybrid winds are of prime quality compared with the already existing daily products available from Indian Space Research Organization (ISRO)

    Altimetry for the Future: Building on 25 years of Progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    SARAL/AltiKa data analysis for oceanographic research: Impact of drifting and post star sensor anomaly phases

    No full text
    International audienceAltiKa, first ever high frequency Ka-band altimeter on board SARAL (Satellite with ARgos and ALtiKa) has gone through different phases of operations, viz. Exact Repeat Mission, (ERM, March 2013 - July 2016), Drifting phase, (DP, July 2016 - January 2018) and then to Mispointing phase, (MP, February 2018 - till date). A detailed assessment of Sea level anomaly (SLA), Significant Wave Height (SWH) and Ocean Surface Wind Speed (WS) has been carried out during these different phases with a focus on the North Indian Ocean. Crossover analysis using the Jason series of satellites available during various phases of SARAL suggest high quality of SARAL/AltiKa data during the ERM and DP with root mean square differences of the order of 0.080 m, 0.25 m and 1 m/s for SLA, SWH and WS respectively. These differences are more during MP, being 0.095 m, 0.45 m and 1.72 m/s for SLA, SWH and WS respectively. Wavenumber Power spectrum computed from the along-track AltiKa SLA reveals that slopes in the mesoscale band (70-250 km) in different phases of operations are not very different. Errors in gridded SARAL/AltiKa SLA with respect to standard AVISO product remains unchanged during DP, but degrade by nearly 9.3% in the MP as compared to ERM. To assess the effect of assimilating along track SWH and SLA from different phases, two set of wave and circulation model simulations, with and without SARAL AltiKa data assimilation, were performed. Assimilation of SWH improved the wave height simulation by ∌ 12.8% during the DP and ∌ 8% during ERM and MP. As regards to circulation modeling, no significant difference of assimilating SLA from different phases was observed in the mesoscale range. These results indicate the usefulness of SLA from SARAL AltiKa during DP and MP for studying the mesoscale dynamics

    How useful are mispointing phase SARAL/AltiKa geophysical products for ocean applications?

    No full text
    International audienceSARAL/AltiKa, the first microwave altimeter operating at Ka-band frequency, recently completed nine years of operations in orbit. During these years, it has catered to many applications related to operational oceanography, climate sciences, hydrology and cryosphere. More specifically, in oceanography, SARAL has contributed immensely to operational wave and circulation modelling, eddy detection/- tracking, ocean current generation and many more. However, since Feb 2019, SARAL has moved from the drifting phase (DP) to the mispointing phase (MP) due to the malfunctioning of the star sensor of the spacecraft. In this study, we analyse the instrument’s per- formance and its waveforms during its ongoing MP. We find out that during the MP, significant wave height (SWH) measurements are anomalously high between 18 and 24 m, and wind speed measurements are between 16 and 19 m/s. In sea surface height anomaly (SSHA), there is a steady rise in negative values during the MP. In the return waveform, $15% degradation in Brown-type waveforms in the open ocean region is noticed. These changes significantly impact the SARAL applications. Two important applications of wave fore- cast and eddy detection are discussed here as examples. Following this, we also recommend using provided quality flags so that the data can be further explored for various ocean applications

    Validation of SWH and SSHA from SARAL/AltiKa Using Jason-2 and In-Situ Observations

    No full text
    International audienceThe focus of this study is the validation of significant wave height (SWH) and sea surface height anomaly (SSHA) obtained from the first Ka-band altimeter AltiKa onboard SARAL (Satellite for ARGOS and Altimeters). It is a collaborative mission of the Indian Space Research Organization and Centre National d'Etudes Spatiales (CNES). This is done using in-situ observations from buoy and Jason-2 measurements. Validation using buoy observations are at particular locations while that using Jason-2 altimeter is an attempt towards global validation of Altika products. The results clearly indicate that the SARAL/AltiKa provide high-quality data and the errors are within a predefined range of accuracy. A parallel validation of SWH from other altimeters, which monitored ocean since last decade, like EnviSAT and Jason-2 was also performed with buoy observations. The results clearly show that the accuracy of AltiKa SWH is much better than EnviSAT and comparable to reference mission Jason-2. The accuracy is quite good for the calm sea while in the rough seas the accuracy degrades some. The inter-comparison of SARAL/AltiKa SSHA with Jason-2 indicates a fair match between them. These validation exercises demonstrate the high quality of AltiKa products, usable for practical applications
    corecore